

 88 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 2, Issue 3, March, 2015

International Journal of Computer Systems (ISSN: 2394-1065), Volume 2– Issue 3, March, 2015
Available at http://www.ijcsonline.com/

Loose Coupling between Cloud Computing Applications and Databases: A

Challenge to be Hit

Ebtehal Nassar, Ehab Ezzat and Sherif Mazen

 Information systems Department,
Cairo University, Giza- Egypt

Abstract

One of the main characteristics of database driven applications is the strong tight coupling between application and
database. Thus, any required change in the database schema leads to change in database access layer. Problems elicit
during design phase (specifically in database schema defining and representation), development phase, and maintenance.
If the database is shared between different applications, applying changes will be more difficult. The available solutions
proposed adding a middle layer that receives query and returns results in a unified form. This research focuses on the
limitations of tightly coupled architecture. In addition, it hits the challenge of loose coupling between cloud computing
applications and databases by encapsulating the database access code and queries in a separate layer.

Keywords: Tight and loose coupling, cloud computing, and application architecture.

I. INTRODUCTION

The term tight coupling means a type of coupling in
which software components/layers are dependent upon
each other. This means that if any one of these
components is modified the other components also should
be adapted to be able to deal with this modifications [1].
Also, if the codes are duplicated in different places this is
a facet of tight coupling, because changes in codes will
need modification in different places or components.

The default design of - database driven- application is
to put database access code and queries inside the
application implementation files, so if any changes
required in the database (database refactoring, database
type change or maintenance), the application will be
affected and most probably it may need to be rebuilt.

Maintenance of application for bug fixing need changes
in application code and it will be hard to identify if the bug
exists in database access code or in business logic code. If
the application is distributed the problem will be more
complicated; as changes must be applied to all parts of the
application. This means that there is a tight coupling
between application and database and this introduces a lot
of problems if the database change is required.

As web applications need to be loosely coupled to be
rapidly and easily scaled up [2], we try to apply this
concept on the relationship between application and
database. Since cloud computing depends on the paradigm
of offering everything as a service by supporting loosely
coupled components there is a need to make cloud
components, as loosely coupled as possible [3].

 This paper is categorized as follows, in section II we
will introduce the main problems of tight coupling and
how these problems exist between the application and the
database, and how loose coupling will help in making the
change of database types or schemas easier and faster.

In section III, we briefly present the researches that try
to decrease the change in application if database changed.
In section IV the proposed solution is highlighted,
introduces how to use a middle layer as an approach to
achieve loose coupling between applications and
databases. In section V, a comparison between the
proposed solution and the existing database driven
applications (three tier architecture) is presented. Finally
section VI concludes the paper and drives the future work.

II. TIGHT VS. LOOSE COUPLING
Different researches compared tight coupling versus

loose coupling according to different perspectives. One of
these comparisons is presented in [4]. This comparison
measure tight coupling between software
components/layers according to the following
perspectives:

 Physical coupling (it considered there is tight
coupling if there is a must to have a direct physical
link between the components is required)

 Communication style, if the communication is
synchronous this means that each component will
wait to the other and this gives tight coupling.

 Type system, if it‟s an interface semantics it
considered tight coupling because the interface
semantics must be defined between the
communicating components.

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 89 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

 Interaction pattern, the interaction pattern is
considered tightly coupled if it‟s designed as OO-
style of interaction; it must know how the object
relates to other objects not only the logic of the
desired object.

 Control of processes is considered tightly coupled
if the processes are managed centrally.

 The service discovery and binding, it‟s related to
the Service Oriented Architecture, if the service
discovery is statically bounded it considered tight
coupling case.

 Platform dependencies, it‟s considered tightly
coupled if there is dependence between
application/component and the platform it will run
on.

This comparison is summarized in Table I.

TABLE I. TIGHT VERSUS LOOSE COUPLING

Level Tight Coupling Loose Coupling

Physical coupling Direct physical link
required

Physical intermediary

Communication

style

Synchronous Asynchronous

Type system Strong type system
(e.g., interface
semantics)

Weak type system
(e.g., payload
semantics)

Interaction

pattern

OO-style navigation of
complex object trees

Data-centric, self-
contained messages

Control of process

logic

Central control of
process logic

Distributed logic
components

Service discovery

and binding

Statically bound
services

Dynamically bound
services

Platform

dependencies

Strong OS and
programming language
dependencies

OS- and programming
language independent

Also there is a special comparison presented by Cesare

Pautasso and Erik Wilde in [2] to measure coupling level
for web services, this comparison is specified to the web
services, it measures coupling degree by testing different
facets like: discovery of the service, identification, binding
and others. These facets and the degree of coupling for
each one, are presented in table II.

TABLE II. COUPLING FACETS

 facet Tight coupling Loose coupling
1 Discovery Registration Referral
2 Identification Context-based Global
3 Binding Early Late
4 Platform Dependent Independent
5 Interaction Synchronous Asynchronous
6 Interface

orientation
Horizontal Vertical

7 Model Shared Model Self-Describing
Messages

8 Granularity Fine Coarse
9 State Shared, Stateful Stateless
10 Evolution Breaking Compatible
11 Generated code Static None/Dynamic
12 Conversation Explicit Reflective

A. Problems of tight coupling
Tight coupling arises in different categories of

computer science; in application structure, coupling exists
if there is duplication of written codes inside different
parts of the application. Another factor that can be tested
to check tight coupling is the control of process logic. If
the control of process is managed by a central process this
will lead to tight coupling [4].

One of the most important factors used for testing

application architecture, is measuring tight coupling. For
example tight coupling is considered one of the main
drawbacks of client/server architecture, it was concluded
from need for control the communication‟s ends between
client and server to get the client work with the server
software. So if the programmer needs to update or change
something in the server software s/he should apply
changes to all clients deal or communicate with this
server, and this is one of the very clear tight coupling
problems [5].

Another tight coupling problem was detected in the

service composition, in this process tight coupling
detected from the ability to extract the description
language of the web services, and the implementation
language details of them. Using tight coupling service
composition limits the creation of user- generated services
and contents [6].

B. Advantages of loose coupling
One of the main advantages of use loosely coupled

architecture is to makes the application appears more agile
and enables faster change. Also it increases system
maintainability [4]. The current development of services
resides on the concept of loose coupling [2]. Service
Oriented Architecture (SOA) depends on the loose
coupling of components as it makes the creation of
systems easier by composing services together and it
enables the services and components update without
disrupting other components that interacts with these
changed components [7].

 Loose coupling implies that services share a small set

of assumptions so the impact of change is very limited,
and therefore the services can be considered
independently. According to that the loosely coupled
systems can be easily scaled.

In usage of network, developers used the concept of

loose coupling to make applications dependent from the
network protocols. This helps applications to use network
infrastructure without need to write specific codes for
specific network protocol which give the ability to switch
between different protocols without affecting the
application code [4]. This is showed in figure 1.

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 90 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

Figure.1 A communication middleware framework to isolate the

application developers from the details of the network protocol [4]

As previously mentioned, the use of loosely coupled
architecture helps in systems‟ easy maintenance and
scaling up, which is one of the main requirements of web
applications and specifically on cloud environment [8].
Also the loose coupling becomes more important
according to the need of satisfying the user requirements.
And as the requirements on the cloud environment change
rapidly the loose coupling architecture may be the best
solution.

C. The coupling between application and database
According to the different facets of coupling exist in

the software architecture we try to measure the coupling
degree between applications and database. First, in the
application design process, one of the main steps is to
create the database schema because the application
development will rely on it.

The second issue, after the application being built if
there is a need of database refactoring [9] the application
developer should change the database access code related
to the changed parts to be able to deal with the database
changes.

According to the new paradigm of using NoSQL
stores, if there‟s a need to use a NoSQL store for an
application uses a relational database, we will need to
change all database access code. As these issues show a
very clear type of tight coupling there is a need to find a
solution to ensure loose coupling between application and
database.

III. RELATED WORK

Nowadays most of the applications going to use
NoSQL stores, but if application is built on a relational
database it will need to be rebuilt to access NoSQL stores
[10]. One of the main benefits we may get by make loose
coupling between application and database is to replace
relational databases with NoSQL stores without
application change.

A good work was previously done to present NoSQL
stores [11], [12], [13]. But each one of these NoSQL stores
has its own structure and to use it, it‟s required to build the
application according to it.

The existing solutions to minimize the change in the
application upon the database change are presented in this
section.

A. Migration process from relational to NoSQL
databases

The usage of cloud computing applications exceeds the
capabilities of the relational databases; these applications
need to accumulate and analyze a huge amount of data
daily. The usage of relational databases to complete these
tasks faces a lot of challenges and problems. These
problems may arise from the need of data sharding. A
research is done to give guidelines to migrate data from
relational databases to NoSQL stores to pass these
problems and get the opportunity to get the benefits of
NoSQL stores. [16]

B. Extending MySQL into NoSQL
Another approach to overcome the need to change

everything to switch from SQL to NoSQL is to extend
MySQL into NoSQL; this approach provides the usage of
Object Relational Mapping (ORM) to map objects from
the developer code to tables in the database. Then partition
these tables into database nodes.

They designed a unique ID schema that‟s optimized
for the primary key look up operations. The shared key
information is encoded into its data ID. By using this
technique, queries with data ID can go directly to the
target node without the need to know the key that the data
is distributed on.

A data access framework on top of MySQL is provided
to guarantee a fast and robust data access with availability
and scalability. The target of this framework is to achieve
data access with high scalability and availability; those
targets are achieved by the following:

 Horizontally portioning of tables into different
database nodes to have high scalability.

 Automation of the procedures for master failover
and providing an online tool for shared
rebalancing to have high availability.

 Leverage MySQL storage engine for robust data
management.

 Design of a unique ID lookup operation to get fast
data access with multiple data nodes.

 Support of HandlerSocket plug-in that gives the
ability to read requests routed to replica nodes;
this will support fast access on the level of a single
node.

As presented in figure.2 the architecture of the system
is based on portioning the database tables horizontally into
multiple database nodes. The tables‟ rows are separately
stored based on a certain key. The key systems are done
using hash-based sharding and range-based sharding. [15]

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 91 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

Figure.2 The structure of extinding MySQL database into NoSQL

C. SQL Processing Data in NoSQL
An approach of SQL processing Data in NoSQL is

presented in [18].
This approach presents a method to have SQL-like

commands to manipulate data on NoSQL stores. It
processes structured data in NoSQL stores using
MapReduce [19]. It transforms relational databases into a
NoSQL structure; and the data is manipulated by a series
of MapReduce functions then integrated into a framework
to provide SQL-like queries. This solution provided its
own MapReduce codes to process different ANSI- SQL
queries.

D. Universal Query Language (UQL)
A trial for having a unified query language is

introduced in [20]. By considering all objects are in the
form of Unified State Model (USM) which is a universal
model of objects; and introduces a universal query
language to deal with this model of objects. It deals with
objects as a set of three components: atomic values,
external names, and identities. The value of an object can
be a set of objects; this means that the object can be
composite object.

UQL operators are as follows: renaming, flatting,
mapping, evaluating, getting k-th subobject, filtering,
nesting, cloning, product, grouping, transposing and
folding.
An example of mapping SQL into UQL:
Assuming the following relational database schema with
two tables:

emp: empno, firstname, lastname, salary, deptno
dept: deptno, deptname, location

SQL query to be operated:
SELECT firstname, lastname
FROM emp
WHERE lastname = 'Schmidt'

Assuming the state of this database is „o‟. The form of

this query in UQL will be:

By using this approach all database types will be
treated by the same way. As all data objects will be
mapped to a universal state model and can be queried by a
universal query language.

E. SQL++
A new query language was developed to solve this

problem by writing queries that can run on SQL and
NoSQL databases it‟s called SQL++ [14]. This query
language‟s purpose is to write queries that can be useful
for writing software that interoperates between different
NoSQL databases or between SQL and NoSQL databases.

SQL++ is a data model and query language that can
deal with SQL and NoSQL databases. Its target is to
decrease the change in the application if we need change
in the database and make the application deal with
different types of databases; and proposing a unifying
query language to deal with SQL and NoSQL databases
with the same code.

It uses a middle layer to execute queries over different
types of databases and mash up results send back to client.
On SQL‟s end, a database has a fixed schema comprising
flat tables, where a table is a set of homogeneous tuples
and each tuple is a set of scalar attributes. The SQL++ data
model is designed as a superset of both SQL‟s relational
tables and JSON.
SQL++ has its own data model like:

It deals with data as a JSON (JavaScript Object Notation)
object [21]. SQL++ introduced a framework for their
middle layer (Forward middleware).
It's showed in figure 3.

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 92 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

Figure.3 SQL++ structure [14]

IV. THE PROPOSED APPROACH LOOSE COUPLING MIDDLE
LAYER

According to the tight coupling between application and

database we try to move the database access codes to a
separate layer. So, if any changes needed to be applied on
database like: database refactoring or database type
change, the database access code will be updated in one
place only which is the middle layer. This means that the
application itself will not be affected with any changes in
the database.

As presented in figure.4 the structure of our design is to

have a middle layer between the application and the
database; compared to the three tier architecture presented
in figure.5 where the database access codes are stored
inside the application itself. The middle layer will be
responsible for dealing with the database and return the
results to the application.

The database access codes, metadata and queries will

be written inside this layer. In this case the application will
call a function in the middle layer; this function will send
query to the Database Management System, get results and
return to the application. Inside the function in the middle
layer the DB connection code and queries will be written.

By applying this design, the application will not need

to know the structure of the used database and will not be
affected if we need to change the database schema or type
used. The application won‟t include any queries or
metadata about the database.

Figure.4 the structure of the proposed design

Figure.5 the three tier architecture [17]

Using the middle layer will help in communication
with the database without the need to know the database
type, server or schema. And this increases maintainability;
interoperability and flexibility of database refactoring and
change without affecting applications.

V. THE PROPOSED LAYER DIFFERENCE

 As presented in the related work section, the
existing solutions depend on one of the coming
approaches : the first one is trying to migrate data from
relational to NoSQL stores or vice versa, like in
“Migration process from relational to NoSQL
databases” [16], the second one is to extend MySQL
database into a NoSQL store to get the benefits of
NoSQL stores as presented in “Extending MySQL into
NoSQL”[15], with the same concept “SQL Processing
Data in NoSQL” [18] is to process SQL data in NoSQL
stores.

Another approach is to have a universal query language
to run on different types of databases like relational and
NoSQL stores. These solutions are presented in
“Universal query language” [20] and “SQL++” [14].

The target of all these solution is to decrease the
change in application when there is a need to change
database type. But the problem still exists because the
database access code written inside the application code;
any changes in the database like: database refactoring,
database type change will need changes in the application
code.

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 93 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

SQL++ (the unified query language) project used a
middle layer to process database queries on different types
of databases and mash up results from different stores; but
it still has the same problem as other solutions; because
the data access codes are written inside the application.
The queries must be written inside the application and
with well known of database schema.

To the best of our knowledge, there is no solution
presented to use a programming middle layer to be used
between the application and database to handle the queries
and guarantee the loose coupling between the application
and the database. A comparison between the application
with the use of a middle layer and the database driven
application (three tier architecture) is presented in table III.

TABLE III. COMPARISON BETWEEN DATABASE DRIVEN APPLICATION AND USING A MIDDLE LAYER

Comparison elements Database driven application (three
tier architecture)

The application with the use of middle layer

Knowledge of the database schema during

the design phase

Must know the database schema
and type

Application : No need

Knowledge of the database schema during

the development phase

Must know the database schema
and type

Application: No need

Maintenance (Bug fixes) There will be difficulty in deciding
in which part the bug exists

Application: if the bugs are in the application the change will
be done once

Database refactoring (example:

normalization of tables, drop column,

make a nullable column not null ..)

It‟s a must to change the database
access code related to the changed
tables

Application: No changes needed

Change database type from relational to

object oriented or NoSQL

It‟s a must to change all database
access code inside the application
to apply the changes

Application: No changes needed

According to comparison between the database driven
application (three tier architecture) and the application
with a middle layer, we need to measure the coupling
degree between the application and the database which is
presented in table IV.

TABLE IV. COMPARISON BETWEEN DATABASE DRIVEN
APPLICATION AND APPLICATION WITH A MIDDLE LAYER WITH RESPECT TO

COUPLING FACETS

Coupling facets Database driven
architecture

Application with
a middle layer

Physical coupling Loose Coupling Loose Coupling
Communication style Tight coupling Tight coupling
Type system Tight coupling Loose Coupling
Interaction pattern Tight coupling Loose Coupling
Control of process logic Tight coupling Loose Coupling
Service discovery and

binding
- -

Platform dependencies Tight coupling Loose Coupling

As introduced in table IV this is a comparison between
the application with a middle layer, and the traditional
database driven application, using the coupling
measurement by Dirk Slama, Karl Banke, Dirk Krafzig in
[4].

VI. CONCLUSION AND FUTURE WORK
This paper has shown that the tight coupling between

application and database leads to major problems during
maintenance, development, design, database schema
defining and representation. In this research a loosely
coupled architecture was proposed to ensure that any
change in database schema or type will not affect the
application that uses this database.

We tried to show the trials that are done to solve the
problem of need to application‟s change according to any
database‟s change. And we declared that according to our

research there is no solution presented to guarantee the
loose coupling between application and database.

Our proposed solution is to have a middle layer to
separate the database access code from the application.
This will lead to a high degree of loose coupling between
applications and databases. As a future work to the
proposed solution; architecture for the middle layer will be
presented and implemented. The proposed layer will be
implemented to work on relational databases and NoSQL
stores.

REFERENCES
[1] Tight coupling, (Accessed 2015-2-22)

http://www.webopedia.com/TERM/T/tight_coupling.html

[2] C. Pautasso, E. Wilde, New York, NY, USA, 18th international
conference on World Wide Web: Why is the Web Loosely
Coupled? A Multi-Faceted Metric for Service Design, 2009, 911-
920

[3] S., P., and S. Capelli. "A practical and automated approach for
engineering service-oriented applications with design patterns."
Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International. IEEE, 2014.

[4] D. Slama, K. Banke, D. Krafzig, Service Oriented Architecture:
Inventory of Distributed Computing Concepts, chapter 3, 2004.

[5] J. Bloomberg, R.Schmelzer, Service Orient or Be Doomed!: How
Service Orientation Will Change Your Business, 2006.

[6] K., S. , et al. "Loosely coupled service composition for deployment
of next generation service overlay networks." Communications
Magazine, IEEE 50.1 (2012): 62-72.

[7] MongoDB organization, MongoDB , (Accessed 2015-3-30)
http://www.mongodb.com/

[8] A. grawal, D., et al. "Data management challenges in cloud
computing infrastructures." Databases in Networked Information
Systems. Springer Berlin Heidelberg, 2010. 1-10.

Ebtehal Nassar et al. Loose coupling between cloud computing applications and databases: A challenge to be hit

 94 | International Journal of Computer Systems, ISSN-(2394-1065), Vol.2, Issue 3. March, 2015

[9] P. Sadalage, ThoughtWorks, Refactoring Databases: Evolutionary

Database Design, (Accessed 2015-2-22)
http://databaserefactoring.com/

[10] R.Cattell, New York, NY, USA, Scalable SQL and NoSQL data
stores in ACM SIGMOD 39(4),2010, 12-27.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. Jacobsen, N. Puz, D. Weaver and R. Yerneni,
PNUTS: Yahoo!‟s Hosted Data Serving Platform, VLDB
Endowment 1 (2), 2012,1277-1288.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshallvand W.
Vogels , New York, NY, USA, twenty-first ACM SIGOPS
symposium on Operating systems principles, 205-220, Dynamo:
Amazon‟s Highly Available Key-value Store, 2007

[13] F. Chang, J. Dean, S. Ghemawat, C. Hsieh, Deborah A. Wallach,
M.Burrows, T.Chandra, A.Fikes, and R. E. Gruber, Seattle, WA,
OSDI'06: Seventh Symposium on Operating System Design and
Implementation, Bigtable: A Distributed Storage System for
Structured Data, 2006

[14] K. Ong, Y. Papakonstantinou , R. Vernoux, ,cornell university
library, The SQL++ Unifying Semi-structured Query Language,
and an Expressiveness Benchmark of SQL-on-Hadoop, NoSQL and
NewSQL Databases, 2014.

[15] S., H., et al. "An Object-oriented Approach for Extending MySQL
into NoSQL with Enhanced Performance and Scalability." DBKDA
2014, The Sixth International Conference on Advances in
Databases, Knowledge, and Data Applications. 2014.

[16] G., A., et al. "Building an Experiment Baseline in Migration
Process from SQL Databases to Column Oriented No-SQL
Databases." J Inform Tech Software Eng 4.137 (2014): 2.

[17] F. Normen, November 2008, Using Web Services in a 3-tier
architecture, (Accessed 2015-3-30)
http://weblogs.asp.net/fredriknormen/using-web-services-in-a-3-
tier-architecture

[18] P., W. "A Method of SQL Processing Data in NoSQL." 2nd

International Conference on Soft Computing in Information
Communication Technology. Atlantis Press, 2014.

[19] D.Jeffrey, and S.Ghemawat. "MapReduce: a flexible data

processing tool." Communications of the ACM 53.1 (2010): 72-77.

[20] Wi.niewski, Piotr, and K.Stencel. "Universal query language."

(2012).

[21] JSON organization, Introducing JSON, (Accessed 2015-3-30)
http://json.org/

